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Abstract We describe an optimized algorithm for finding all symmetry-distinct
maps of a given graph. It contains significant improvements on the computing time
by representing the maps as linear codes. In this way, the time consuming step of
removing equivalent maps can be solved more efficiently by searching for a “minimal
code”. As an example we apply the algorithm to the 32-vertex Dyck-graph for which
more than 4 billion cases should be investigated. One of its most symmetrical maps
forms an interesting blueprint for a hypothetical negatively curved carbon allotrope
of genus 3.

Keywords Topology · Graph-embeddings · Carbon · allotropes · Molecular design

1 Introduction

Since the early years of chemical theory, scientists have been familiar with mathemati-
cal graphs. In the first molecular models, a molecule was nothing else than a collection
of solid spheres held together by attractive forces. This simplified model led to a very
attractive pictorial representation of molecules as graphs [1], namely as a set of points
(atoms) connected by lines (chemical bonds). Although this very crude approach leads
to important insights into the nature of molecular structures, it completely neglects
their 3D structure which is indispensable for the correct description of molecular
properties like i.e. chemical activity. The most exact description of a molecule would
be to give the exact positions of the nuclei together with a spatial distribution of the
electrons. The storage of such exact coordinates is however extremely tedious if one is
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working with large set of molecules like in the screening of large molecular databases
for new lead compounds. This indicates that there is a clear need for an intermediate
model which is not only combinatorial in nature, like the graph, but also incorporates
some kind of metric. The most elementary way to add such geometrical information
is by mapping the graph on a 2D closed orientable surface like the sphere or torus
to form a 2-cell embedding or map [2,3]. When such an embedding takes place, the
graph divides the underlying surface in a set of 2D closed regions, called 2-cells or
faces, which form a new entity not apparent in the purely graph theoretical description.
Chemists have already become acquainted with the notion of a face through the struc-
tural description of inorganic complexes and especially through the flourishing field of
carbon chemistry investigating structures like fullerenes and carbon nanotubes. The
mathematical theory underlying this “polyhedral model” [4] is well-developed and
known as the theory of oriented 2-cell embeddings or maps.

In a previous publication [5] we discussed how the polyhedral model can be used
for the topology-driven design of novel molecular structures. In this process one first
starts by searching for all symmetry-distinct maps of an interesting (in most instances
a highly symmetrical) graph. In general, this set of maps will be very large and con-
sists of maps on surfaces of different genera. Once this set is fully determined, one
can isolate the most interesting maps (mostly the low genus or high symmetrical ones)
and obtain their most symmetrical realization in 3D space. The procedure for finding
such a 3D-realization was thoroughly discussed in Ref. [5]. In the present article we
are mainly focused on the first step of finding all symmetry-distinct maps for a given
graph. As the number of such maps grows exponentially with the size of the under-
lying graph we will need very efficient representations and algorithms to be able to
investigate reasonably large graphs.

2 From map to rotation scheme

It is well known that a graph can be completely determined by its adjacency list,
which for every vertex gives a complete list of all the vertices which are connected
to it. A map1 can be described in a similar way by means of a rotation scheme [3],
which as we shall see, corresponds with an ordered adjacency list. The first step in
forming a rotation scheme out of a given map consists in giving each point on the
orientable surface (sphere, torus or higher genus surface) a consistent sense or hand-
edness (clockwise or anticlockwise). An orientable surface provided with such a sense
will be called an oriented surface and mappings on them are called oriented maps.
Looking at the neighborhood of a vertex v on an oriented surface, the chosen sense
determines an ordered sequence of edges around v, which is called a local rotation
at v. This sequence is defined up to cyclic permutations. As a result, the number of
possible local rotations at v, nr (v), is given by:

nr (v) = (deg(v) − 1)! (1)

1 In the present paper we restrict ourselves to maps on orientable surfaces.
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Fig. 1 (Left) The graph of the cube (Right) All-hexagon toroidal map of the cube graph exhibiting D4h
symmetry

Table 1 Rotation scheme of the toroidal map of the cube graph depicted in Fig. 1 Its linear code equals
(2,2,2,2,2,2,2,2)

1. 2 5 4 5. 1 8 6
2. 1 6 3 6. 2 7 5
3. 2 7 4 7. 3 8 6
4. 1 8 3 8. 4 7 5

where deg(v) denotes the degree or valency of vertex v. As an example in Fig. 1
we show the graph of the cube and one of its maps on the torus. This toroidal map
corresponds to the set of local rotations given in Table 1 (we have chosen an anti-
clockwise rotation). Notice that instead of listing the consecutive edges, it is sufficient
to list their end-vertices. The set of local rotations, one for each vertex, is denoted
as a rotation scheme. It is obvious that every oriented map can be described by such
a rotation scheme. However, the reverse is also true, namely, every rotation scheme
corresponds to an oriented map [5–7]. The problem of finding all maps can thus be
reformulated as the problem of finding all rotation schemes. As a rotation scheme is
completely defined by the local rotations at all of its vertices, the number of different
rotation schemes (= the number of oriented maps) equals:

Nr =
∏

v∈V

nr (v) (2)

By using rotation schemes, the generation of all possible maps has become an easy
task, but its reduction to the set of symmetry-distinct maps still poses some serious
problems. It involves the very time consuming step of checking for isomorphisms
between each newly derived rotation scheme and all previously found symmetry-
distinct solutions. A second, although subordinate problem, is related to the storage
as the resulting rotation schemes need to be stored as matrices.

3 From rotation scheme to linear code

It is not at all difficult to see how we can turn a rotation scheme into a linear code.
From Eq. 1 we know that the number of different local rotations at a given vertex v

corresponds with (deg(v) − 1)!, which is nothing else than the number of ordered
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Table 2 Procedure which connects the six possible vertex-rotations of a tetravalent vertex to their corre-
sponding rotation-states

v. 3 4 6 8 −→ (1234) “1”
v. 3 4 8 6 −→ (1243) “2”
v. 3 6 4 8 −→ (1324) “3”
v. 3 6 8 4 −→ (1342) “4”
v. 3 8 4 6 −→ (1423) “5”
v. 3 8 6 4 −→ (1432) “6”

sequences of edges around v, defined up to cyclic permutations. The problem that
a vertex rotation is only defined up to cyclic permutations should not worry us as it
can easily be circumvented if we only consider the cyclic permutation which starts
with the lowest-labeled vertex. As an illustrating example of this linearization process
we take the toroidal map at the right-hand side of Fig. 1. Its corresponding rotation
scheme in Table 1 indeed shows that all vertex-rotations start with their lowest-labeled
vertex. Because all vertices are trivalent, they can only have two possible vertex-rota-
tions which we will denote as rotation-states “1” and “2”. By definition we always
let state “1” coincide with the vertex-rotation where the adjacent vertices are ordered
in a strictly increasing way. The second state “2” just corresponds with the alterna-
tive and inverse rotation. From the rotation scheme in Table 1 we see that all eight
vertex-rotations are not strictly increasing so the corresponding linear code of this
map reads (2,2,2,2,2,2,2,2). In a similar fashion, there will be a one-to-one corre-
spondence between every possible rotation scheme and the set of linear codes ranging
from (1,1,1,1,1,1,1,1) to (2,2,2,2,2,2,2,2). This one-to-one correspondence also makes
it possible to retrieve the corresponding rotation scheme from a given linear code. For
this purpose one should only have a complete knowledge of the adjacency list of the
investigated graph. The generation process of finding all maps can thus simply be
reduced to the generation of all possible linear codes. By convention we always start
from the smallest possible code which only consists of state “1” rotations, in this case
(1,1,1,1,1,1,1,1). To get the next linear code we identify the outermost right location
in the present code for which the state can still be increased and raise its value by
one. However, if this location does not correspond with the outer right position, all
rotation-states located further to the right should be reset to “1”. For the present exam-
ple this just means that the next codes in line will correspond to: (1,1,1,1,1,1,1,2),
(1,1,1,1,1,1,2,1), (1,1,1,1,1,1,2,2), (1,1,1,1,1,2,1,1), etc. The process automatically
stops when there is no location left which can be further increased, so in our case with
the code (2,2,2,2,2,2,2,2). If one replaces the numbers 1 and 2 in these linear codes
by, respectively 0 and 1 it can easily be seen that for this trivalent case the generation
process just corresponds with listing in increasing order all binary numbers on eight
elements.

Extension of this formalism for trivalent graphs to graphs with vertices of higher
degree is straightforward. For a tetravalent vertex, for instance, one has six possible
vertex-rotations and they can therefore be identified with the rotation-states “1” to “6”.
The link between the exact vertex-rotations and these states is illustrated in Table 2
where we give the six different rotations of an arbitrary tetravalent vertex v together
with their corresponding states. The procedure is now as follows. In a first step we
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appropriately replace the vertex-labels of the vertex-rotations by the numbers 1–4.
This is done in a way that the smallest labeled vertex is replaced by 1, the second
smallest by 2, etc. This translates the original rotations into one of the six permuta-
tions on the labels 1–4. (One only has six permutations as the starting vertex is always
identified with the lowest-labeled vertex). It is now possible to assign the states “1”
to “6” to these permutations. State “1” just corresponds with the smallest permutation
(1234), state “2” to the second smallest permutation (1243), etc. As an example, the
vertex-rotation (3,8,4,6) can be identified with permutation (1423) and corresponds
with label “5”. Further extensions to vertices of degrees 5, 6, or higher can made along
the same line. Notice that there is no need for all vertices to have the same degree. But
if this is the case, one should be very cautious during the generation of all linear codes
as the higher degree vertices have to run over more states than the lower degree ones.
For instance, for a vertex of degree 3 one should only vary its possible states from “1”
to “2” where the states of a vertex of degree 5 should already be varied from “1” to
“24”.

4 Symmetry transform of a linear code

Now that we can represent a map as a linear code we can show how we can simplify
the procedure of isomorphism testing. For this purpose it is necessary to define the
exact action of the graph automorphisms on a given linear code. Starting from a given
map, a graph symmetry only reshuffles the vertex-labels and therefore always leads
to a symmetry-equivalent map, although in most instances differently labeled. If the
labeling is indeed changed, this vertex shuffling will lead to a different rotation scheme
and therefore also to a different corresponding linear code. It is this change of the linear
code that makes it possible to change the tedious isomorphism testing process of the
previous chapter into the more time-friendly search for a minimal code. Simply stated
this means that if during the generation process a linear code is formed, which can be
lowered by the action of a symmetry operation, a symmetry-equivalent map should
have been found before. Consequently, the newly derived code can instantaneously be
removed from any further investigation. The crucial step in this process is of course to
define how a graph automorphism can work on a linear code and possibly change it.
In the following we fully describe this action, first for the easy case of purely trivalent
graphs and later for the more general case of graphs with higher and non-fixed vertex
degrees.

4.1 Trivalent maps

Before we turn to the question of the direct action of a graph automorphism on a given
linear code, we first describe its exact action on the corresponding rotation scheme. As
an illustrative example we take the rotation scheme of the toroidal embedding of the
previous section (Table 1) and define the action of the following graph automorphism:

C3 → (1)(2, 4, 5)(3, 8, 6)(7) (3)
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Table 3 Rotation scheme of the map which results from applying the C3 symmetry operation of Eq. 3 to
the all-hexagon map of Fig. 1

1. 4 2 5 2. 1 6 3
4. 1 3 8 3. 4 7 2
8. 4 7 5 7. 8 6 3
5. 1 6 8 6. 5 7 2

Table 4 Standard form of the rotation scheme of the symmetry transform of the map of Fig. 1 under the
C3 operation of Eq. 3 The linear code of this transformed map reads (2,2,1,1,1,1,2,2)

1. 2 5 4 5. 1 6 8
2. 1 6 3 6. 2 5 7
3. 2 4 7 7. 3 8 6
4. 1 3 8 8. 4 7 5

Table 5 Symmetry transforms of the rotation states “1” and “2” of vertex 5 under the C3 symmetry
operation of Eq. 3

5. 1 6 8 “1” −→ 2. 1 3 6 “1”
5. 1 8 6 “2” −→ 2. 1 6 3 “2”

Within the Oh symmetry group of the cube graph this automorphism corresponds with
one of the eight three-fold C3 operations. This vertex-permutation reshuffles the ver-
tices of the original rotation scheme of Table 1 and thereby leads to the new rotation
scheme of Table 3. As this table does not correspond to our standards (we always
list the cyclic permutation starting with the smallest-labeled vertex and also list the
vertex-rotations according to increasing vertex number) we have transformed it into
the standard format and show the result in Table 4. From the latter rotation scheme it
can be easily seen that under the action of the C3 symmetry element the original linear
code (2,2,2,2,2,2,2,2) is changed into the code (2,2,1,1,1,1,2,2), which corresponds to
a smaller binary number. However, if we had to use this method over and over again
to check for the effect of a graph symmetry on a linear code we would not get the
dramatic gain in computing time we pointed out before. We shall however see that the
symmetry transform of a given linear code can be calculated without any reference to
the corresponding rotation schemes.

In the symmetry transformation of a linear code, there are two important points one
should realize. A first point is that the new rotation around a given vertex v is not deter-
mined by the original rotation around this vertex but by the original rotation around
the vertex u which is mapped onto v by the investigated automorphism. A second and
very important point is that all states of the original code other than the one of vertex u
have completely no influence on the resulting state of vertex v. Lets now as an example
investigate the new rotation of vertex 2 under the C3 symmetry of Eq. 3. Under this
symmetry, vertex 2 is the image of vertex 5, so it will be the rotation at vertex 5 which
determines the new rotation at vertex 2. Vertex 5 can be in two possible states, namely
state “1” or state “2”. Both these states and their corresponding ordered adjacency lists
are given on the left-hand side of Table 5. Their symmetry transforms and correspond-
ing states under the investigated C3 automorphism are given on the right-hand side.
As the states are not changed we can conclude that under this operation the original
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Fig. 2 Schematic overview of the action of the C3 element of Eq. 3 on the linear code (2,2,2,2,2,2,2,2) of
the map of Fig. 1

state of vertex 5 is just transferred to vertex 2. It can however also happen that states
are not just transferred but also changed. One such example is the the new state of
vertex 3 which by an analysis similar to the one above can be proven to be always
opposite to the original state of vertex 6. For trivalent graphs these are the only two
possibilities that can occur. As a result, the action of a symmetry operation on a linear
code can be represented by means of a double list. The first list indicates from which
original vertices the new states should be retrieved and the second list indicates if
these states should be kept (+ sign) or reversed (− sign). For the present C3 symmetry
operation we get the following double list (1+,5+,6−,2−,4−,8−,7+,3+). The 6− in
third position for instance just means that the new state of vertex 3 is opposite to the
state of vertex 6 in the original code. In Fig. 2 we give a schematic overview of this
operation on the (2,2,2,2,2,2,2,2) linear code corresponding with the toroidal map of
Fig. 1. Here the lines connecting the vertices of the upper and lower code indicate
which vertices of the original (upper) code should be used to determine the states of
the vertices in the transformed (lower) code. The plus and minus signs on these lines
indicate if the states should just be kept or altered during their transfer. The figure
easily shows that the transform of the code (2,2,2,2,2,2,2,2) under the investigated C3
operation will be equal to (2,2,1,1,1,1,2,2). A similar analysis is of course possible for
all graph automorphisms and makes it possible to efficiently calculate all symmetry
transforms of a given linear code.

4.2 Maps of higher degree

For the trivalent case we only had two possible rotation-states and it was therefore
not difficult to describe the action on a given linear code as during the “transfer of
states” from vertex u to v the rotation-state could only stay the same or change to its
opposite state. For vertices of higher degree, there are more possible states and it is
therefore impossible to describe their action by means of a double list. For a tetravalent
graph for instance one will need a 6 × V matrix to completely describe the action of
a given graph automorphism. To illustrate this we will use a tetravalent map whose
corresponding rotation scheme is given in Table 6. The map corresponding with this
rotation scheme is shown in Fig. 3, and corresponds with one of the five Platonic solids
of genus 3, described in Ref. [8]. The order of the automorphism group of the graph
which underlies this map equals 768. Here we list one of its automorphisms which we
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Table 6 Rotation scheme of the tetravalent map of Fig. 3 Its linear code reads (6,4,4,4,1,4,6,2,2,2,1,2)

1. 2 12 10 6 “6” 7. 4 12 8 6 “6”
2. 1 9 11 3 “4” 8. 3 5 9 7 “2”
3. 2 8 10 4 “4” 9. 2 4 10 8 “2”
4. 3 7 9 5 “4” 10. 1 3 11 9 “2”
5. 4 6 8 12 “1” 11. 2 6 10 12 “1”
6. 1 7 11 5 “4” 12. 1 5 11 7 “2”

Fig. 3 All-hexagonal Platonic
map of genus 3 taken from Ref.
[8]

Table 7 Symmetry transform of the rotation scheme of Table 6 under the graph automorphism of Eq. 4
The corresponding linear code reads (1,4,2,4,6,4,1,2,4,2,6,2)

1. 6 10 12 2 “1” 9. 8 10 4 2 “4”
6. 1 7 11 5 “4” 4. 5 3 7 9 “4”
5. 6 4 12 8 “6” 7. 6 8 12 4 “1”
8. 5 9 7 3 “2” 12. 1 5 11 7 “2”
3. 8 2 4 10 “2” 11. 6 2 12 10 “6”
2. 1 9 11 3 “4” 10. 1 3 11 9 “2”

Table 8 Symmetry transforms of the 6 possible rotation-states of vertex 3 under the symmetry operation
of Eq. 4

3. 2 4 8 10 “1” −→ 5. 6 8 4 12 “5”
3. 2 4 10 8 “2” −→ 5. 6 8 12 4 “1”
3. 2 8 4 10 “3” −→ 5. 6 4 8 12 “4”
3. 2 8 10 4 “4” −→ 5. 6 4 12 8 “6”
3. 2 10 4 8 “5” −→ 5. 6 12 8 4 “2”
3. 2 10 8 4 “6” −→ 5. 6 12 4 8 “3”

will use to illustrate our procedure:

(1)(2, 6)(3, 5)(4, 8)(7, 9)(10, 12)(11) (4)

In Table 7 we show the transformed rotation scheme which results from the action
of this graph automorphism on the original map. Notice that we have indicated the
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Table 9 The 6×V transformation matrix which completely describes the action of the graph automorphism
of Eq. 4 on all possible linear codes

⎛

⎜⎜⎜⎜⎜⎝

6 1 5 6 2 1 2 6 5 1 6 1
4 2 1 4 5 2 5 4 1 2 4 2
3 3 4 3 6 3 6 3 4 3 3 3
2 4 6 2 3 4 3 2 6 4 2 4
5 5 2 5 1 5 1 5 2 5 5 5
1 6 3 1 4 6 4 1 3 6 1 6

⎞

⎟⎟⎟⎟⎟⎠

corresponding rotation-states, but have chosen not to put this table in its usual standard
format as this will facilitate our next discussion. As for the trivalent case, the rota-
tion-state of a vertex v is solely determined by the original state of the vertex u which
is mapped onto v under the graph automorphism. However, vertex u can have six
different states which can all be altered during their transfer to vertex v. It is therefore
necessary to calculate the resulting images for each of these six initial states. As an
example, in Table 8 we have calculated the images of all six possible rotations of vertex
3 under the operation of Eq. 4 and also derived their corresponding states. The same
procedure can be applied to every vertex and leads to the 6×V matrix given in Table 9.
Here the rows denote the values of the initial states (1–6) and the columns correspond
with the vertex labels (1–12). The third column therefore exactly corresponds with the
results of Table 8. The table can now be interpreted as follows: i.e. the third entry of
the fourth row which reads 6 tells us that if the rotation-state of vertex 3 (= column)
is equal to “4” (= row) in the original code, it must be changed into rotation-state “6”
before is transferred to vertex 5 (= the symmetry transform of vertex 3) of the new
code. Notice that every column contains exactly once the states “1” to “6”. This is
obvious as it can not be that two different rotations of a given vertex are transformed
into the same final state. The entries which are relevant for our example are indicated
in bold. If we read them from the left to the right we get “1,4,6,2,2,4,4,4,1,2,6,2”. One
should however be careful at this point as this set does not correspond with the new
linear code. It corresponds to the rotation-states of the vertices in the order that they
are listed in Table 7 namely 1,6,5,8,3,2,9,4,7,12,11,10. However, if we sort this list of
vertices and their corresponding states in increasing order we end up with the trans-
formed linear code which reads (1,4,2,4,6,4,1,2,4,2,6,2). Although it looks like this
process will take a lot of computing time, one should realize that the transformation
matrices have to be calculated only once and from then on can be used to calculate
the symmetry transforms of any given linear code.

A further extension of the procedure to graphs with non-fixed vertex degrees is cer-
tainly possible. The symmetry transforms of all vertices under a given automorphism
can be calculated in just the same way and the results can be stored in a matrix with
dimensions (maxdeg − 1)! × V where maxdeg corresponds with the highest vertex
degree.

5 Implementation

In Fig. 4 we show a flowchart of our newly derived algorithm to find all symme-
try-distinct maps of a given graph. The motor of the program is the module which
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Fig. 4 Flowchart of the improved algorithm to find all symmetry-distinct embeddings

generates all possible linear codes. This module only needs a list of all vertex degrees
so that it knows the maximum number of rotation-states for each entry of the linear
code. Once a new code is generated it can be transferred to the minimal code module
where the actions of all graph symmetries are investigated one by one to see if it is
possible to form a smaller code. The only information which is needed at this level
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are the transformation matrices which were calculated prior to the actual generation
process. The transformed linear code can attain four different forms. A first possibility
is that the transformed code is smaller than the original one. In this case we can con-
clude that a symmetry-equivalent map was already found. We can therefore dismiss
the code from any further investigation and directly turn to the generation of the next
linear code. If the transformed code is not smaller than the original code we can check
if it is equal. If this is the case we have found a graph automorphism which keeps the
corresponding rotation scheme unaltered and therefore corresponds with a rotational
symmetry element of the map associated with this linear code. In this case we store
this symmetry element and directly start investigating the next graph automorphism.
If both codes are also not equal we must have a look if they are complementary. A
rotation scheme, and therefore also a linear code, is in 1-1 correspondence with maps
on oriented surfaces, but in 2-1 correspondence with maps on orientable surfaces [5].
Simply stated this means that if a map is reflexible (= contains orientation-reversing
or improper symmetries) its orientation reversed counterpart (although they are sym-
metry-equivalent) will also be generated by our procedure. In our search for a minimal
code this will not pose any problems. However, if we also want to have a complete
list of all improper symmetry elements of the map we should be able to recognize its
complementary code. The complementary code of a map just corresponds with the
code of the map where all vertex-rotations are reversed. For the code of a trivalent
map this is an easy process as the states “1” and “2” are each others complement. For
vertices of higher degrees one must explicitly calculate all complementary couples.
For a tetravalent vertex for instance one can see that the states “1” (1234) and “6”
(1432), “2” (1243) and “4” (1342), and “3” (1324) and “5” (1423) are each other com-
plements. The complement of the linear code (6,4,4,4,1,4,6,2,2,2,1,2) of the map of
Table 6 therefore reads (1,2,2,2,6,2,1,4,4,4,6,4). If we find that the transformed code
is indeed complementary we will add it to the list of improper symmetry elements of
the map and start investigating the next graph automorphism. Otherwise the code is
just larger than the original one and not special in any way so we directly turn to the
next automorphism. If at a certain moment all graph automorphisms are investigated
and none of them was able to produce a smaller code, we can conclude that we have
found a new map. It can therefore be stored, as a linear code of course, and subjected to
further investigation. It is important to realize that at this point the complete symmetry
of the map is already known and can be allocated to one of the subgroup classes of
the automorphism group of the graph. An algorithm to derive these subgroup classes
has been discussed in Ref. [8]. Once the corresponding subgroup class is derived we
return to the beginning of our process and generate the following code in line. This
process is continued until all linear codes have been generated. The result is a list
of all symmetry-distinct maps represented by their minimal linear codes. Note that if
one wants further details of the derived maps, such as their genus γ or the sizes and
exact structure of their faces, the linear codes have to be translated back into rotation
schemes. Because of the 1-1 correspondence between these two representations and
our complete knowledge of the graph adjacency list this poses no further problems.

Based on the algorithm above we wrote a Fortran program which can retrieve all
symmetry-distinct embeddings of a graph and will only need its adjacency list as
input. Before we apply this program to the highly symmetrical Dyck graph and give
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its results, we will first briefly describe the efficiency of the algorithm and give some
smart implementations which can make the algorithm run even faster.

6 Efficiency of the algorithm

Although the isomorphism checking procedure is greatly improved by the linear code
method, it still remains the most time-consuming step of the algorithm. Any further
improvements on this procedure can therefore lead to a substantial gain in computing
time. As the list of graph automorphisms is randomly ordered, in case of a duplicate
solution one has to run on average through half the number of graph automorphisms
before one finds a smaller code. This can however be a serious task, especially when the
automorphism group of the graph is quite large. The question which naturally arises is
therefore if there exists an efficient ordering of the set of graph automorphisms which
fastens up this process. In other words, is there an ordering such that we have to run on
average through less than half the amount of automorphisms. Well the answer is yes
and no at the same time. It is no in case one searches for one single ordering that can
be used during the whole generation process. However, the answer is yes if one allows
a dynamic ordering of the automorphisms. With dynamic we mean that the ordering
is not fixed from the beginning to the end, but varies according to the needs of the
algorithm at a certain time. The possible improvements of such a dynamic ordering
are based on the following two observations:

1. The transformed state of a given vertex v is solely determined by the original state
of the vertex u which is mapped onto v by the automorphism under consideration.

2. During the generation process, the states of positions located at the beginning of
the linear code vary slower than those located at the end.

To see how such a dynamic ordering can help us, just consider the following imag-
inary linear code which starts with (3,5,4,5,…) together with a graph automorphism
which permutes vertex 4 to vertex 1 and changes its state from “5” to “2”. This directly
implies that all linear codes starting with this sequence will be lowered by this auto-
morphism. So, if we could place this automorphism at the beginning of our list for as
long as this initial sequence is not changed, it would lead to a considerable speeding up
as the first encountered automorphism would directly lead to a smaller code. Of course
this effect is only temporary as from the moment that the state of vertex 4 changes into
state “6” it can well be that its image will be higher than “3” (the state of the first vertex
of the code) and therefore no longer leads to a smaller code. If this is the case, we end
up in the worst case scenario for as long as this vertex 4 stays in state “6” it will always
give rise to higher codes. From here on this automorphism should therefore best be
moved to the end of the list. The previous discussion is quite intuitive, but how can we
incorporate these observations into our computer code? One way to do this is to keep
track which automorphisms have lowered the most recently investigated duplicates.
For this purpose we need to use a stack which has a length equal to the order of the
graph automorphism group and for which each entry corresponds to exactly one of
the graph automorphisms. Initially, all entries of this stack are set to zero. Once the
generation of all linear codes has started, each time a duplicate is found we identify the
automorphism which has lowered its linear code and increase its corresponding stack
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entry by one. After a certain number of linear codes have been investigated (let us say
10000 but this number can be changed at will) the algorithm takes a look at the stack
to see which automorphisms have lowered the previous 10000 codes most of the time.
Based on the previously discussed observations we can assume that they also have a
great likelihood to lower the next set of 10000 codes. We therefore update our list of
automorphisms and put the most used automorphism at the beginning and the least
used at the end. Of course at this point we should reset all stack-values back to zero.
Otherwise we would drag all previous results with us through the whole algorithm.
On the contrary, as to fully exploit the advantages of this dynamic ordering one should
only focus on the most recent results. The same analysis can be made after the next
interval of 10000 codes and so on.

The efficiency of our algorithm is of course determined by the average number of
automorphisms one has to investigate before a smaller linear code is found. In the best
case scenario, one disposes of an automorphism list which is ideally ordered at any
time of the algorithm. This simply implies that each duplicate code will be lowered
by the first listed automorphism. One should however be careful as this lower bound
of one investigated automorphism is not theoretically possible. The reason is that
each time we find a new symmetry-distinct map we have to run through all possible
automorphisms, |Aut(graph)|, as its corresponding linear code can not be lowered.
The remaining (|Aut(graph)|/|Aut+(map)|) − 1 duplicates (|Aut+(map)| stands for
the order of the rotational subgroup of the map) which are characterized by higher
linear codes can however theoretically be lowered by the first automorphism. One can
therefore state that the total number of automorphisms which have to be checked for
a symmetry-distinct map with a rotational subgroup of order |Aut+(map)| equals:

|Aut(graph)| + (|Aut(graph)|/|Aut+(map)|) − 1 (5)

The average number of automorphisms which have to be checked before a smaller
code is found, is therefore given by:

∑[|Aut(graph)| + (|Aut(graph)|/|Aut+(map)|) − 1]
#linear codes

(6)

where the summation is over all symmetry-distinct maps. The formula above gives an
exact theoretical lower bound and will be different for each investigated graph. How-
ever, if we assume that all maps have the trivial C1 symmetry (which is not implausible
as for larger and larger graphs the fraction of maps with C1 symmetry tends asymptot-
ically to one) we find from Eq. 5 that the total number of automorphisms which have
to be checked equals:

2|Aut(graph)| − 1 (7)

A map with C1 symmetry will be generated exactly |Aut(graph)| times by the algo-
rithm so the average number of automorphisms which are needed to find a lower code
equals:

123



J Math Chem (2009) 45:386–405 399

2|Aut(graph)| − 1

|Aut(graph)| (8)

which for large graph automorphism groups tends to 2. The efficiency of our algorithm
can therefore be tested by comparing the average number of tested automorphisms for
each linear code with this theoretical lower bound or otherwise stated: the closer this
number gets to two the more efficient our calculation will be. However, for smaller
graphs the fraction of maps with symmetries other than C1 will be significant and
the theoretical limit will be higher than 2. One therefore has to use the general for-
mula of Eq. 6 to check for efficiency. For the case of the cube graph, for instance,
the theoretical lower bound will be equal to 3.570. In Chap. 8 we investigate the case
of the Dyck graph which will be large enough to check for the real efficiency of our
algorithm.

7 Correctness of the algorithm

If one implements a new algorithm, one of course needs some procedures to check
its correctness. An obvious way is to compare the results of our algorithm to cases
for which the complete set of symmetry-distinct solutions is known. Within the math-
ematical literature however the emphasis is mainly on the enumeration and not on
the generation of all symmetry-distinct solutions. The problem of enumerating all
orientable symmetry-distinct embeddings for a given graph was not solved analyt-
ically until 1988 when Mull et al. derived a general enumeration method based
on the famous Burnside lemma [9]. For the present context the Burnside lemma
reads:

|C(G)| = 1

Aut G

∑

α∈Aut G

|F(α)| (9)

where |F(α)| = {ρ ∈ R(G)|α(ρ) = ρ}. In this formula |C(G)| denotes the num-
ber of symmetry-distinct embeddings, |Aut G| the order of the automorphism group
of the graph and α one of the graph automorphisms. ρ corresponds with a given
rotation scheme and R(G) stands for the set of all rotation schemes of the graph.
The most important symbol |F(α)| is called the fixed set of α and corresponds with
the number of rotation schemes which are fixed (remain the same) under the ac-
tion of α. The analytical calculation of these fixed sets is thoroughly described in
Ref. [9]. To calculate them one only needs a complete knowledge of the adjacency
list of the graph and the exact structure of one automorphism out of each conju-
gacy class of the graph automorphism group. We are however not going into the
mathematical details but only state that we used the results of the paper of Mull et
al. to write a Fortran program which can analytically calculate the number of sym-
metry-distinct embeddings for a given graph. Using this program we could check
that the number of symmetry-distinct solutions produced by our algorithm is indeed
correct.
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Fig. 5 The highly symmetrical
32-vertex Dyck graph

Table 10 Listing of all symmetry-distinct maps of the Dyck graph according to their genus and the order
of their rotational symmetry group

Order → 192 96 64 48 32 24 16 12 8 6 4 3 2 1 Total

γ = 1 – 1 – – – – – – − − − − − − 1
γ = 2 – – – – – – – – − − − 1 1 − 2
γ = 3 – 1 – – – – 1 – 1 3 3 4 11 26 50
γ = 4 – – – – – – – 1 5 2 6 21 99 1,190 1,324
γ = 5 – – – – 2 2 1 1 12 6 37 98 812 51,742 52,713
γ = 6 – – – – – – – – 1 23 6 234 4,888 1,330,264 1,335,416
γ = 7 – – – – – – 4 – 12 18 115 300 7,515 9,824,060 9,832,024
γ = 8 – – – – – – – – 2 8 29 332 7,529 11,151,518 11,159,418
Total – 2 – – 2 2 6 2 33 60 196 990 20,855 22,358,800 22,380,948

Table 11 Listing of all symmetry-distinct maps of the Dyck graph according to their genus and the order
of their full symmetry group

Order → 192 96 64 48 32 24 16 12 8 6 4 3 2 1 Total

γ = 1 1 – – – – – − − − − − − − − 1
γ = 2 – – – – – – − − − 1 1 − − − 2
γ = 3 1 – – – 1 – 1 3 1 4 7 − 18 14 50
γ = 4 – – – – – 1 5 2 6 13 37 8 284 968 1,324
γ = 5 – – 2 2 1 1 10 6 23 58 196 40 3,324 49,050 52,713
γ = 6 – – – – – – 1 7 6 120 628 130 23,188 1,311,336 1,335,416
γ = 7 – – – – 4 – 12 10 29 76 579 232 58,672 9,772,410 9,832,024
γ = 8 – – – – – – − 0 3 14 47 326 8,434 11,150,594 11,159,418
Total 2 0 2 2 6 2 29 28 68 2861,495 736 93,920 22,284,372 22,380,948

8 Case study: the Dyck graph

The Dyck graph is characterized as the only cubic symmetric graph on 32 vertices.
Its exact connectivity is shown in Fig. 5. The graph is highly symmetrical as the or-
der of its automorphism group equals 192. It consist of 14 conjugacy classes and 83
subgroup conjugacy classes. Using the linear code generation algorithm we obtained
a complete symmetry classification of all distinct maps according to these subgroup
conjugacy classes. The result are shown in Tables 10 and 11, where we list all
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Fig. 6 Highly symmetrical map of the Dyck graph on the torus

symmetry-distinct maps according to their genus and the order of their rotational
symmetry group (Table 10) and of their full symmetry group (Table 11). From these
tables we directly see that the set of 232 = 4 294 967 296 maps (see Eq. 2) is reduced
to a set of 22 380 948 symmetry-distinct solutions. Our previous statement that for
large graphs the greatest fraction of the maps has trivial C1 symmetry is also con-
firmed, so we expect the theoretical lower limit to be around two. Using Eq. 6 and the
results of Table 10 the exact lower bound can be calculated and equals 1.995. During
our calculations the average number of checked automorphisms was 2.506 which is
only 26% higher than the theoretical limit and very good if we keep in mind that we
came from an algorithm where we needed to check an average of 96 automorphisms
(half the group order of the graph) to find a lower code. The total running time of
the optimized program for this example was approximately 4 h on an Intel Pentium
4/2.5 GHz processor. This Dyck graph with 32 trivalent vertices therefore lies at the
boundary of what is still feasible in reasonable time. A close inspection of Table 11
shows two very interesting maps whose symmetry groups correspond exactly with the
full automorphism group of the graph. Their order, 192, is exactly equal to four times
the amount of edges, and therefore correspond with a genus-1 and genus-3 regular
map [8], where the genus-1 map is not only regular but also minimal. Both structures
will be fully described in the next section.

8.1 Molecular realization

From a chemical point of view, the Dyck graph is very interesting [10,11]. It is trivalent
and can therefore serve as the blueprint for a sp2 hybridized carbon allotrope. In order
to be chemically relevant the maps should however be realized in 3D space. A first
possible 3D realization of the Dyck graph can be based on the all-hexagon map on the
torus [12,13], shown in Fig. 6. Because of its very small dimensions it will however
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Fig. 7 Highly symmetrical map of the Dyck graph on the triple torus

incorporate a serieus amount of strain and therefore it does not lead to a chemically
plausible structure. In principle, the strain of the toroidal closing can be easily removed
if one opens up the torus to form a small cylinder. Connecting several of the cylinders
together leads to a nanotube-like structure, which we might characterize as a (4,0)
zigzag tube, but even such a tube would probably not be very realistic as its diameter
will be to small.

We are therefore more interested in the alternative highly symmetrical genus-3 map
where, instead of the hexagons, the octagons of Fig. 7 become faces [11]. This map is
deeply connected with the previous one by a process called Petrie-Dualization [14].
During this dualization process the symmetry of the original map and its underlying
graph are retained, but the topology of the map can change as the faces of the map are
replaced by a new set of faces, formed by taking Petrie-paths. A Petrie-path is defined
as a path where alternatively left and right turns are taken. As a consequence three
consecutive edges of such a path will never belong to the same parental face. In our
case, the Petrie paths of the genus-1 map shown in Fig. 6 can be identified with the
zigzag paths in the directions �a1, �a2 and �a1 − �a2, and correspond exactly with the 12
octagonal faces of Fig. 7.

The realization of this map on a closed genus-3 surface once again leads to an access
of strain. The better option therefore consists in finding a realization on a negatively
curved open structure, thereby removing most of its strain. In Fig. 8 we show the most
symmetrical 3D-realization of this map on the Plumber’s nightmare surface (The exact
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Fig. 8 Embedding of the Dyck graph on the Plumber’s nightmare surface. Left: Atoms and edges indicated
in blue belong to the same unit-cell; all other vertices belong to neighboring unit-cells and are only included
to show the octagonal faces. Right: Equivalent edges are indicated in blue and lead to a 60◦ twist on identi-
fication. Identification of the upper blue and lower red edge leads to the least strained structure which still
incorporates a twist of 30◦

procedure behind this process can be found in Ref. [5]), which easily lends itself to
propagation in all three spatial directions, thereby forming a zeolite-type structure.
Notice that only the blue atoms belong to the actual unit-cell. All other vertices belong
to neighboring units but are included to show the octagonal faces, which are distributed
between neighboring subunits.

If one wants to construct a network that completely mimics the original adjacen-
cies of the Dyck graph, one should identify the blue edges on the right-hand side
of Fig. 8. As can be seen from this figure, these edges are not properly located to
make this match by simple periodic translation, but instead they are twisted over an
angle of 60◦ [15]. The same mismatch exists when the connections are made in the
other two spatial directions. On the left-hand side of Fig. 9 we show a 2 × 2 × 2
supercell formed by making these connections which preserve the Dyck adjacencies
and optimized the resulting structure by MM+ molecular modeling. As a result of the
60◦ twists, the shapes of the individual unit-cells are quite distorted from the relaxed
structure of Fig. 8, which means that the structure exhibits considerable strain. Aside
from this structure, an alternative and less strained allotrope can be found if one iden-
tifies the upper blue edge with the lower red edge. The mismatch between the edges
is hereby reduced from 60◦ to 30◦. However, one should keep in mind that by making
this new identifications, one changes the connectivity of the decorating graph. As in
the previous case, a 2 × 2 × 2 supercell was constructed and optimized using MM+.
The resulting structure is shown on the right-hand side of Fig. 9. The figure shows
that in this case the individual plumber-subunits are less distorted from their original
shape. The 30◦ structure will therefore exhibit less strain and makes a more plausible
chemical candidate than the 60◦ all-Dyck structure.
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Fig. 9 Supercells formed by introducing twists of 60◦ (left) and 30◦ (right) between neighboring subunits
(Taken form Ref. [15]). The left structure preserves the connectivity of the original Dyck graph

9 Conclusions

By representing maps as linear codes instead of rotation schemes, we showed that the
problem of finding all symmetry-distinct maps can be solved much more efficiently.
The reason is that one no longer has to check for isomorphism between the newly
derived map and previously stored solutions but instead can use the “minimal code
method” which makes it possible to discard all linear codes which can be transformed
into smaller codes. For this purpose one only has to define the actions of the graph
automorphisms on the linear codes. We proved that these actions can easily be calcu-
lated and stored in the form of a set of transformation matrices. As these matrices stay
completely invariant, they should only be calculated once, and from then on can be
used during the whole generation process. Some further improvements are possible if
we allow our list of graph automorphisms to be sorted dynamically according to the
needs of the algorithm at a specific time. Using this optimized algorithm we calculated
all symmetry-distinct maps of the Dyck graph and showed that our implementation
comes quite close to achieving the theoretical perfection. The two most symmetrical
maps of this Dyck graph are identified as a genus-1 and genus-3 regular map. The latter
forms a blueprint for a interesting negatively curved carbon allotrope solely composed
of octagons.
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Flanders.

References

1. A.T. Balaban, Chemical Applications of Graph Theory (Academic Press, London, 1976)
2. B. Mohar, C. Thomassen, Graphs on Surfaces (Johns Hopkins University Press, Baltimore, 2001)
3. J.L. Gross, T.W. Tucker, Topological Graph Theory (Dover Publications, New York, 2001)

123



J Math Chem (2009) 45:386–405 405

4. A. Ceulemans, E. Lijnen, The polyhedral state of molecular matter. Eur. J. Inorg. Chem. 7, 1571–1581
(2002)

5. E. Lijnen, A. Ceulemans, Oriented 2-cell embeddings of a graph and their symmetry classification:
generating algorithms and case study of the Möbius-Kantor graph. J. Chem. Inf. Comput. Sci. 44,
1552–1564 (2004)

6. J. Edmonds, A combinatorial representation for polyhedral surfaces. Am. Math. Soc. Not. 7, 646 (1960)
7. In Ref. 5 we describe how the original topological map can be retrieved from a rotation scheme by a

procedure called face-tracking
8. E. Lijnen, A. Ceulemans, Topology-aided molecular design: the Platonic molecules of genera 0 to 3.

J. Chem. Inf. Model. 45(6), 1719–1726 (2005)
9. B.P. Mull, R.G. Rieper, A.T. White, Enumerating 2-cell imbeddings of connected graphs. Proc. Am.

Math. Soc. 103, 321–330 (1988)
10. R.B. King, Negative curvature surfaces in chemical structures. J. Chem. Inf. Comput. Sci. 38, 180–188

(1998)
11. A. Ceulemans, E. Lijnen, L.J. Ceulemans, P.W. Fowler, The tetrakisoctahedral group of the Dyck graph

and its molecular realization. Mol. Phys. 102, 1149–1163 (2004)
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